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Abstract. The relativistic analogue of the space-translation method is derived. Using this 
method the generalisation of the Kroll-Watson formula is obtained for the scattering of 
an arbitrary charged particle (e.g., mesons, hyperons, quarks, etc). The separation of the 
background and resonant parts of the scattering amplitude is predicted. 

1. Introduction 

In the last decade a surge of interest in atomic physics with a laser field has been 
observed. The applications of lasers to many branches of applied physics are the 
reasons for this trend (see, e.g., Bunkin er a1 1972, Grey Morgan 1975). The electron- 
atom scattering within the laser field is also interesting because of the possible applica- 
tion of this process to the measurement of off-shell scattering matrix elements which 
cannot be observed without the use of an electromagnetic field. The appearance of 
the off-shell elements is due to the role of photon as the ‘third body’, which can be 
absorbed or emitted in the course of scattering. This fact has been well known for 
almost fifty years (Nordsick 1937) and some attempts have been made to use the 
bremsstrahlung process for measurements of the off -shell scattering matrix elements 
in nuclear physics. Because the intensity and frequency of the laser can be more 
precisely controlled, therefore, it is hoped that the applications of lasers in replacing 
bremsstrahlung radiation can appear to be more profound. 

The use of lasers in scattering processes introduces additional parameters: 
frequency, intensity, polarisation, the structure of modes, etc. Among these parameters 
the frequency and intensity seem to be important and the problem has been investigated 
only for the following regions of these parameters: (i)  low intensities and arbitrary 
frequencies (perturbation theory calculations (for a review see Gavrila and van der 
Wiel 1978)); (ii) arbitrary (but not very high) intensities and low frequencies (Kroll 
and Watson 1973; for a review see also Mittleman 1982b, Rosenberg 1982); (iii) high 
intensities and high frequencies (Gavrila and Kamidski 1984). 

In quantum electrodynamics the laser field is described as the quantum state of 
the electromagnetic field. For instance, the single-mode laser is best described by a 
quantum coherent state with a stochastic phase. It appears, however, that in cases of 
strong laser fields the classical description becomes correct (Biaiynicka-Birula and 
Bialynicka-Birula 1976, Mittleman 1982b). Since we will deal with sufficiently powerful 
lasers, therefore, the classical description of the laser field can be adopted here. 

i Work supported in part by the Polish Ministry of Science, Higher Education and Technology under grant 
MR-1-7. 
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Moreover, the laser field will be considered as a linearly polarised monochromatic 
plane wave. The linear polarisation is for simplicity and the possible application of 
the result obtained to the resonant scattering, but the monochromaticity of the field has 
to be justified. The laser field in many cases consists of a collection of closely spaced 
modes such that Aw/hw<< 1, where w is the central frequency and Ahw is the mode 
spacing. In these cases the electromagnetic field can be considered as a wave of 
frequency w slowly varying in time amplitude and phase. This means that any 
calculation carried out for a single-mode laser field can be adapted to the multimode 
case by taking the cross section calculated with the monochromatic electromagnetic 
field, and averaging it over the adiabatic variations in time of the laser amplitude and 
phase. The calculations along this path has been started to be carried out? (Bunkin 
and Karapetyan 1971, Kriiger and Jung 1978, Jung 1980, Zoller 1980, Daniele and 
Ferrante 1982, Daniele et a1 1983). Such an approach, however, accounts only for the 
pulse shape effects and does not allow a full description of the influence of realistic 
high power multimode lasers on the processes considered. We will not deal with these 
problems in this paper. 

It is well known from perturbation theory calculations that the interaction of a 
charged particle with a low-frequency radiation field modifies the scattering process 
to such an extent that the scattering amplitude is equal to that without the radiation 
field times the frequency-dependent factor. This is the so-called Low theorem (Low 
1958). Bunkin and Fedorov (1965) obtained a similar factorisation by considering 
potential scattering in the Born approximation within a monochromatic laser field. 
b o l l  and Watson (1973) combined both these results showing that for potential 
scattering within the low-frequency laser field the following factorisation of the diff eren- 
tial cross section du"/df l  for an electron scattering from the initial state with momentum 
Pi and energy Ei =$/2m into a final state with momentum pf and energy Ef=&/2m = 
Ei + nw, occurst 

where Go = -e i i /  mw and the vector potential A( t )  in the dipole approximation was 
assumed to be 

A( t )  = fi cos(wt). (2) 

J,  is the Bessel function of order n. It also appears that the corrections which are 
linear in w can be incorporated into the first term in (1) leading to 

where due' /dfl  is the elastic differential cross section for an electron scattering from 
the initial state with momentum 0; into a final state with momentum Of without the 
radiation field and 

- 
Qi,f = Pi,f- nmw60/ Go( Pf- Pi). 

? This kind of investigation is at its very beginning in the atomic collision theory and is based on results 
which have already been achieved in the related field of the interaction of a strong radiation field with 
isolated atoms and molecules. 
$ The units in which h = c = 1 and the fine-structure constant (I = e2/4w are used. 
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It can be checked that 02 = @, i.e., the off-shell scattering matrix elements are 
proportional to w 2 /  E ?  (Mittleman 1979). The parameter cro can be interpreted as the 
amplitude of the classical motion of the electron within the monochromatic plane 
wave. Therefore, it is obvious that it cannot be arbitrarily large if one applies non- 
relativistic quantum mechanics. The discussion of this problem can be found in Driihl 
and McIver (1983). 

The aim of this paper is to consider the relativistic generalisation of the Kroll- 
Watson formula. The subject seems to be interesting in the context of resonant scattering 
when the background does not allow one to carry out the precise measurement of both 
the resonant energy and width. The important paper of Jung and Taylor (1981) 
proposed exploiting the laser to suppress background terms in the scattering amplitude 
and thus study only the rapidly varying parts. In this paper I argue that such a 
phenomenon can occur also in relativistic scattering. 

Since the background is assumed to be described by a static potential, therefore, 
the potential scattering of charged particles in the laser field is considered. The laser 
field, as has been discussed previously, can be described by the monochromatic plane 
wave of infinite extent, namely, AR,( k x )  = a, cos( k x ) .  Moreover, the Lorentz gauge 
for the radiation field is followed by ak = 0. 

The plan of this paper is as follows. Section 2 contains a discussion of the Volkov 
solution (Volkov 1935,1937). The scattering of electrons by the static spin-independent 
potential d p ( Z )  in the Born approximation within the plane wave is studied in 8 3. 
In § 4 the relativistic generalisation of the Kroll-Watson formula to the case of the 
static spin-dependent potential and low-frequency laser field is derived. Section 5 
contains the discussion. 

2. Volkov solution 

The relativistic electron in the monochromatic plane wave is described by the Volkov 
solution of the Dirac equation, namely? 

where p and A are the electron momentum and polarisation, respectively. I adopt the 
normalisation 

U+(P, A)u(p, A )  = E / m ,  ( 5 )  

where E = p o .  With this condition the number of all possible final states in the 
momentum volume dpf and the incident flux are equal to dpf/(2.rr)3 and lpi\/Ei, 
respectively. For simplicity, the summation over the final electron polarisation and 
the average over the incident electron polarisation will be carried out with the help 
of the formula 

‘r The Feynman notation # = auy” is used. 
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Let me introduce, after Nikishov and Ritus (1964a, b), the family of functions Aj,,t 

dB(cos By’exp(inO-ia sin B+ib sin 28). (7) 

It is straightforward to show that 
m. 

With the help of these functions the Volkov solution can be written in the form 

$rX;  p, A I A R I  

eap e2a2 e eap e2a2 m 

n = - x  

X e x p [ - i ( p + * k + n k ) x ] u ( p , A ) .  4kP (9) 

3. Cross section in the Born approximation 

The scattering matrix of the process considered is equal to 

sfi = s[Pf ,  AfiPi, Ai lARj  dl 

= -im(EiEf)-”* dx q[x;  pf, AfIAR]e$(f)$[x; pi, AilAR, d] (10) I 
where +[x; pi, AilAR, d] is the exact solution of the Dirac equation, 

(iy”a,, - e d ( 2 )  - eKR(k.x) - m)+ = 0, 

$ L X ;  Pi, AilAR, - l-r--oc Pi, Ai lARl .  (12) 

(11) 

which fulfils the initial condition, 

For the external potential which is independent of time the scattering matrix can be 
put down in the following form: 

The transition amplitude TI.?’ in the Born approximation is equal to 

f All these functions can be expressed in terms of the so-called generalised Bessel functions, properties of 
which were studied by Leubner (1981). 
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where 

eapi eap, e2a2  A .  = A .  
I” 

I ” (  kpi kpf ’ 8kpi 

I 
and the Fourier transform of the potential 

Gp(4) = d2 exp(-iXq)s8,(2). 

Summing over the initial and averaging over the final polarisations the following 
expression for the differential cross section in the Born approximation can be obtained: 

where 

and 

T”””(1; jl,j2,j3,jJ 

= (&)J2+J3( & j ’ l + J 4  

= m2 ( - & y i J 3 (  &)’I+’, 

x Tr[ #f(BM Y ’ (XB) J2k%(BM Y (XB) ’41 ’ 
T’” (0 : jl, j2, j3, j4) 

x Tr[ (BM ’I Y’ (XB) ’2(8K) -I3 Y ’ (XB) I 4 l .  

In the formula (18) the abbreviation (15) has been used. 
The final expression for the differential cross section in the Born approximation is 

rather complicated. Nevertheless, the formulae (17) and (18) can be simplified under 
the spatial conditions. In the following I will consider the case in which the angles 
between pf and PI, and the polarisation vector of the laser field d are different from 
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zero. Let me denote by E the energy of the incident or scattered particle. I will assume 
further that the quantity 

x = ( 1 / 1 0 ) 1 ’ 2 ( m / o ) 2 / p I / E  (19) 

is of the order of unity. In equation (19) m is the electron mass, I the laser intensity 
in W cm-2 and Z, = 4.7 x W cm-2. Moreover, the laser frequency w is assumed to 
be much less than the energy E, i.e., 

w / E < <  1. (20) 

Under these assumptions the cross section for n-photon absorption in the Born 
approximation is of the form 

(21) 

where the final energy is determined by the 6 function in (17). This is the relativistic 
generalisation of the boll-Watson formula in the Born approximation. It has to be 
emphasised here that the corrections to (20) are of the order of w / E i .  This property 
of (20) is due to the Born approximation, and in the next section it will be shown that 
in place of (20) the condition 

w / ( E - m ) < <  1, (22) 

should be adopted (as in the non-relativistic case) which is followed of course by (20). 
The scattering of relativistic electrons by the Coulomb potential in the presence of 

a monochromatic plane wave of an arbitrary polarisation has been studied previously 
by Denisov and Fedorov (1967). Their result for the linear polarisation agrees with 
(17) for the potential of the form dP(X) = V(X)g,,. 

The calculation presented in this section seems to be helpful in obtaining the 
generalisation to an arbitrary potential, which is the subject of the next section. 

4. Relativistic Kroll-Watson formula 

In order to obtain the relativistic generalisation of the boll-Watson formula without 
the Born approximation let me consider the following Dirac equation: 

(iy”8, - eAR(kx) - m ) +  = &(XI+, 

where &(a) is an arbitrary static potential, which can depend on any quantum numbers, 
i.e., spin, isospin, colour, flavour, etc. I will look for the solution of this equation 
which fulfils condition (12). Let me then define the new wavefunction 9 [ x ;  p i ,  A i ]  with 
the help of the following unitary transformation: 

(LEx; Pi, A i / A R ,  a1 
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It is not difficult to check that in the case of the linearly polarised laser field the 
modified Dirac equation for 9 [ x ;  pi, Ai]  is of the form, 

(24 )  (i-f a, - m ) 9  = deff[xIAR, 49, 
where the so-called effective potential de* is equal to 

deff[XIAR, dl 

and the operator $ = id. The approach leading to (24 )  is the relativistic generalisation 
of the well known non-relativistic space-translation method (Henneberger 1968). The 
only difference consists in the character of the effective potential deffr which in the 
relativistic theory is the non-local operator-valued potential. 

For further considerations it is better to write down the equation (24 )  in terms of 
the modified Fourier transform of 9, 

where q = (Ei, 4) and Ei is the zero component of pi. This leads to the following 
equation for 3, 

where 

and the functions Aj,n depend on e a q ’ / ( k q ’ ) - e a q / ( k q )  and e2a2 / (8kq‘ )  - e 2 a 2 / ( 8 k q ) .  
Moreover, the four-vector q’ is defined similarly to q, i.e., q’ = (Ei, 4’) .  In the low- 
frequency limit (equation (22 )  with eap / (  k p )  and e’a’/( kp)  fixed) one can keep only 
the first term in (28 )  and neglect ( 1  - e 2 a ’ / ( 4 k q ) ) X  with respect to H- m. This brings 
us to a simple equation for G1, namely, 

( rq-m)+/ [q ;  pi, A ~ I  

+ p [ q ’ ;  pi, Ai]. (29)  
G(q-G‘)A,, , ,(w--- eaq’ eaq e2a2 

kq ’ 8kq’ 8kq‘ 
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This equation can be easily solved with the result 

where $ [ 4 ;  p i ,  hi] is the Fourier transform of the solution of the stationary Dirac 
equation, 

(yoEi+ipv+m)q9[f ;pi ,  h i ] = d ( f ) q 9 [ f ; p i ,  hi]  (31) 

with the incident plane wave and the outgoing spherical wave boundary condition. 

matrix of the process considered is equal to 
Going back to the scattering problem it is straightforward to prove that the scattering 

Sfi = -im(EiE,)-1’2 dx exp(ip,x)u(p, h f ) d e t f [ x l A R ,  d ] ” [ x ;  pi, hi] .  (32) 

It can now be shown that in the low-frequency limit the scattering matrix is equal to 

Sri= -27riz m ( E i E , ) - ” 2 S ( E , - E i - n w )  
n 

eapi eap, e 2 a 2  
kpf ’ S k i  skpf  

x df i i (pf ,  A f )  exp(-iF,f)d(f)q9[f;pi, hi] .  (33) 

This means that the cross section for n-photon absorption is of the form 

du‘”) IFf/ Ao,, (.capi eap, ---)I e2a2 e2a2 - 1 d o  IBiI k ~ i  kp, ’ SkPi S ~ P C  

which is the relativistic generalisation of the boll-Watson formula for an arbitrary 
short-ranged potential d ( f ) .  It is worth noting in this place that although the formula 
(34) was derived considering the electron scattering, it holds also for the scattering of 
charged mesons, hyperons, quarks, etc. 

For almost all lasers available now the intensities and frequencies are such that 
the second argument of the generalised Bessel function Ao,, is small. Hence, in these 
cases, the relativistic Kroll-Watson formula is of the form 

which, for the non-relativistic particles, can be reduced to (1). 

5. Conclusion and prospects 

In this paper relativistic electron scattering within a laser field has been considered 
but the final result (formula (34)) is fulfilled for any charged particle. For sufficiently 
intense lasers (e.g., the CO2 laser) and special configurations of the incident and 
scattered momenta of the particle and the polarisation of the laser beam the suppression 
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of the cross section for n-photon absorption ( n  > 0) or emission ( n  < 0) becomes 
possible. Since the non-resonant background of the collision can be described in terms 
of the potential scattering, therefore, we can hope it is possible to extract the resonant 
part of the scattering process, as it was postulated in the case of the non-relativistic 
scattering by Jung and Taylor (1981)T. The spacetime dependence of the laser field 
can also be included applying methods from the non-relativistic theory, since in both 
cases the same Bessel functions appear in front of the cross section without the laser 
field. 

Consideration of the relativistic theory is also interesting for the reason that there 
exists, contrary to the non-relativistic theory, the exactly soluble model, i.e., the massless 
two-dimensional quantum electrodynamics (see, e.g., Becher 1983)$. It can be hoped 
that with the help of this model many conjectures and results can be tested leading to 
the better understanding of the phenomenon considered. 

The non-relativistic boll-Watson formula takes into account also the linear term 
in w, expressing the cross section in terms of appropriately shifted momenta of incident 
and scattered electrons. Therefore, it is interesting to ask whether it is possible to 
include the linear terms in w also in the relativistic case and whether the momentum 
shift depends on the spin character of d(2).  
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